If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+15X-5=0
a = 1; b = 15; c = -5;
Δ = b2-4ac
Δ = 152-4·1·(-5)
Δ = 245
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{245}=\sqrt{49*5}=\sqrt{49}*\sqrt{5}=7\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-7\sqrt{5}}{2*1}=\frac{-15-7\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+7\sqrt{5}}{2*1}=\frac{-15+7\sqrt{5}}{2} $
| (2^x+1)+(5*2^x)=28 | | 7^5x+1=48^x-9 | | 81-t=53 | | 4x+8=42- | | x+16/24=8 | | 2^x+1+5*2^x=28 | | (x-1)/3=(3x+1)12 | | 1-v=9 | | 5x^2+2x^2=105 | | 2^2x-3=2^x+1 | | 189=-6x+3(-17x-18) | | X^2+0.5x+0.625=0 | | 37+2=7y | | 2*9^x=162 | | 88-2x=52+4 | | 3(q+4)=51 | | 2x2+x=1070 | | 2(z-4)+2=8 | | 2*9x=162 | | 2(-6+x)=x-3/8 | | 4=7-s | | -16-12p=14-9p | | 25/x+2/x=1 | | -6b+12=19-5b+5 | | 3/4x^2=-2x+5/8 | | 9v=-14+8v | | -4-4n=-1-3n | | -5s=7-6s | | 10-2y-10=-9+y | | 2(w-3)=4 | | (2/3)a^2=30 | | -w=6+5w |